2H IDEAL STANDALONE SYSTEM

AIM:

AN EFFICIENT STANDALONE SYSTEM POWERED BY PV PANELS
STANDALONE SYSTEM

ROOF INTEGRATED PV PANEL
- ROOF ANGLE 60°

RAIN FALLS ON THE ROOF AND IS COLLECTED IN THE COLLECTION POINT.

1. Rainwater collection point (roof drains, gutters, etc).
2. Rainwater enters the vortex filter and is processed. (Possible 90% diverted to storage tank.)
3. Remaining water from vortex filter to storage tank.
4. Smoothing inlet - stainless steel "flow calming" device to eliminate turbulence of the incoming water as it enters the tank.

PIPE 40m-50m DEEP

Storage Tank
- 200 LITRES PER BARREL
-增添大型和细小的杂质

VORTEX FILTER
- REMOVES LARGE AND FINE DEBRIS

PUMP
- SUBMERSIBLE 45 PSI

CHARGE CONTROLLER

BATTERY

INVERTER

Purification Kit
- RH-4

Overflow

Auxiliary Inlet

Collection Point

Pressure Tank
- Made of steel

Level Indicator

Tank

Primary Inlet

Float Switch
- cut-off)

Vortex Fine Filter

Grade

Storage Tank
- (size as required)

Auxiliary Inlet
- (size as required)

Vent

Collection Point

ROOF GUTTER

ABOVE GROUND TANK, SUBMERSIBLE PUMP, PRESSURE TANK & PURIFICATION KIT.

INVERTER

RAINWATER HARVESTING SYSTEM DETAIL

ABOVE GROUND TANK, SUBMERSIBLE PUMP, PRESSURE TANK & PURIFICATION KIT.
PROPOSED APPLICATIONS AND ESTIMATED LOADS

<table>
<thead>
<tr>
<th>Equipment/Load</th>
<th>Powered by (see below)</th>
<th>Qty</th>
<th>Load (Watts)</th>
<th>Total Load (Watts)</th>
<th>Hours used per day</th>
<th>Total Energy Use per day (Watt hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR CONDITIONING/VENTILATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>DPN</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>6</td>
<td>600</td>
</tr>
<tr>
<td>WATER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water delivery</td>
<td>PV-Direct</td>
<td>1</td>
<td>70</td>
<td>70</td>
<td>4</td>
<td>280</td>
</tr>
<tr>
<td>Borehole pump</td>
<td>PV-Direct</td>
<td>1</td>
<td>500</td>
<td>500</td>
<td>4</td>
<td>2000</td>
</tr>
<tr>
<td>WATER TREATMENT PLANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All equipment</td>
<td>DPN</td>
<td>1</td>
<td>1500</td>
<td>1500</td>
<td>1</td>
<td>1500</td>
</tr>
<tr>
<td>SOIL AND WASTE WATER DISPOSAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewage treatment</td>
<td>DPN</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>POWER TO SOCKETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>DPN</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>8</td>
<td>800</td>
</tr>
<tr>
<td>Television</td>
<td>DPN</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td>6</td>
<td>120</td>
</tr>
<tr>
<td>DVD player</td>
<td>DPN</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Projector</td>
<td>DPN</td>
<td>1</td>
<td>150</td>
<td>150</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>LIGHTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED fluorescent</td>
<td>DPN</td>
<td>20</td>
<td>10</td>
<td>200</td>
<td>8</td>
<td>1600</td>
</tr>
<tr>
<td>LED fluorescent</td>
<td>DPN</td>
<td>4</td>
<td>40</td>
<td>160</td>
<td>12</td>
<td>1920</td>
</tr>
</tbody>
</table>

TOTAL ENERGY USED PER DAY IN WATT HOURS

11,140 Wh

DPN = DISTRIBUTED POWER NETWORK

or 11.14 kWh
ESTIMATED MAJOR EQUIPMENT TO BE INSTALLED

ENERGY COLLECTION
2,955.5W of total PV capacity needed

STORAGE / DISTRIBUTION
2,955.5W / 175W = 20 modules

SCHOOL DEMAND
11,140Wh per day

Actual requirement:
20 Solar Modules of 175Wp, 17.4V, multicrystalline silicon
24 Deep cycle batteries 210AH, 12V, deep cycle VRLA
1 Inverter 5000W, 230VAC pure sine wave inverter